分位数回归, Oaxaca分解, Quaids模型, 非参数估计程序
可有偿投稿计量经济圈,计量相关则可
邮箱:econometrics666@sina.cn
所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.完整版本do file将会与下一篇文章的do file放进我们的微观计量研究小组.
今天,我们“微观计量研究小组”将为计量经济圈的圈友引荐四个实证方面的计量方法和模型:分位数回归,Oaxaca分解,Quaids模型和非参数估计模型。我们觉得,关于这些模型的一些介绍,各位圈友可以参看中英文论文,因此,就不像之前那样详细阐述每一个model的specifics.
传统的回归分析研究自变量与因变量的条件期望之间的关系,相应得到的回归模型可由自变量的估计因变量的条件期望;分位数回归研究自变量与因变量的条件分位数之间的关系,相应得到的回归模型可由自变量估计因变量的条件分位数。相较于传统回归分析仅能得到因变量的中间趋势,分量回归可以进一步推论因变量的条件概率分布。
**quantile regression---------------
qreg h income age ed w //median regression
sqreg h income age ed w, q(.25 .5 .75) reps(50) //quantile regression
test [q25=q50=q75]: income //test equality of coefficients at quantiles 25, 50 and 75
test [q25=q50=q75]: ed
test [q25]income = [q75]income
net install grqreg //install graph for quantile
grqreg, cons ci ols olsci scale(0.75) //quantile graph for coefficients of ols
Blinder-Oaxaca分解是工资差异分解方法的一种,源自对劳动力市场中歧视的度量。该分解方法将组群之间的工资差异分解为由个体特征差异造成的可解释部分explained和由特征回报差异带来的不可解释的部分unexplained,并把不可解释的部分归因于歧视discrimination。
我们可以对影响工资收入的各因素建立回归模型,然后根据各变量的回归系数和这些变量均值的性别差异进行计算。收入的性别差异可以被分成两个部分,即可以被控制在模型中的各因素解释的部分和纯粹因为性别引起的差异,而这完全由于性别引起的工资差异在经济学中被称之为“歧视”。
**Blinder-Oaxaca decomposition--------------
search oxaca //安装程序
oaxaca z s educ age hh female, by(country) noisily relax
oaxaca z s educ age female, by(country) pooled relax
oaxaca z s educ age female, by(country) pooled detail relax
James Banks, Richard Blundell 和 Arthur Lewbel 在 1997 年提出二次型的恩格尔曲线更加符合经济规律,认为消费支出份额与消费总支出的对数为二次型函数关系,对 AIDS 模型进行了扩展,在 AIDS 模 型的基础上增加一个二次项,称为二次型几乎理 想需求系统(Quadratic Almost Ideal Demand System,QUAIDS) 。这个模型主要用于做消费需求的预测,尤其是食物需求的预测应用比较常见。
**demand for food----------------
webuse food
summarize
search quaids //按章quaids程序
quaids w1-w4, anot(10) prices(p1-p4) expenditure(expfd) nolog
estat expenditure, atmeans //计算价格支出弹性
matrix elas = r(expelas)
matrix list elas //计算每个价格的指出弹性
estat uncompensated, atmeans
matrix uncomp = r(uncompelas)
matrix list uncomp //商品A1%的价格变化导致的商品B需求的变化(行)
非参数估计模型,这种模型对变量分布等假定并不是很严等,因此可以说扩展了参数回归的应用范围。非参数回归模型的两种估计方法即局部多项式回归和光滑样。白话一点讲,就是非参数估计方法是用数据本身特点来建模,而不是我们平时设想的那种建立在经济理论基础上的模型。
**nonparametric regression------------
webuse lowess1 //lowess smoothing
lowess h1 depth
lowess h1 depth, bwidth(.4)
webuse dui, clear
npregress kernel citations fines //kernel regression
npregress kernel citations fines, predict(mean deriv)
npregress kernel citations fines, kernel(gaussian)
可以到计量经济圈社群进一步访问交流各种学术问题,这年头,我们不能强调一个人的英雄主义,需要多多汲取他人的经验教训来让自己少走弯路。总之,越晚加入计量经济圈社群,那么形势会越对你不利,believe in us!
计量经济圈推荐
1.PSM-DID, DID, RDD, Stata程序百科全书式的宝典
2.RDD断点回归, Stata程序百科全书式的宝典
3.Generalized分位数回归, 新的前沿因果推断方法
4.Heckman模型out了,内生转换模型掌控大局
5.PSM倾向匹配Stata操作详细步骤和代码,干货
6.条件Logit绝对不输多项Logit,而混合模型最给力
7.广义PSM,连续政策变量因果识别的不二利器
8.自回归VAR模型操作指南针,为微观面板VAR铺基石
9.有限混合模型FMM,异质性分组分析的新筹码
10.政策评估中"中介效应"因果分析, 有趣的前沿方法
11.多期三重差分法和双重差分法的操作指南
12.多期双重差分法,政策实施时间不同的处理方法
13.随机前沿分析和包络数据分析 SFA,DEA 及操作
14.你的内生性解决方式out, ERM已一统天下而独领风骚
15.多期DID的经典文献big bad banks数据和do文件
16.面板数据里处理多重高维固定效应的神器
17.双栏模型Hurdle远超Tobit, 对于归并数据舍我其谁
18.面板数据计量方法全局脉络和程序使用指南篇
计量经济圈当前有几个阵地,他们分别是如下4个matrix:
①计量经济圈社群——计量经管数据软件等资料中心,
②计量经济圈微信群——服务于计量经济圈社群群友,
③计量经济圈研究小组系列——因果推断研究小组、空间计量研究小组、面板数据库研究小组、微观计量研究小组、计量软件研究小组,
④计量经济圈QQ群——2000人大群服务于计量经济圈社群群友。
计量经济圈是中国计量第一大社区,我们致力于推动中国计量理论和实证技能的提升,圈子以海内外高校研究生和教师为主。计量经济圈六多精神:计量资料多,社会科学数据多,科研牛人多,名校人物多,热情互助多,前沿趋势多。如果你热爱计量并希望长见识,那欢迎你加入到咱们这个大家庭(戳这里),要不然你只能去其他那些Open access圈子了。注意:进去之后一定要看小鹅社群“群公告”,不然接收不了群息,也不知道怎么进入咱们独一无二的微信群和QQ群。注: 只要遵守规则, 可以永久在社群享受社群服务。
进去之后就能够看见这个群公告了